

In The Name of God

Presentation by:Abolfazl Rafati Zomorodi

Supervisor:

Dr. Mohammad Motamedifar

Nov. 2021

One-Step Detection and Classification of Bacterial Carbapenemases in 10 Minutes Using Fluorescence Identification of β -Lactamase Activity

Yanfang Feng, a Joseph W. R. Swain, a Akilan Palanisami, a Shoaib Ashraf, a 🕞 Tayyaba Hasan a, b

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA PHealth Sciences and Technology (Harvard–MIT), Cambridge, Massachusetts, USA

• As a potent β-lactamase, carbapenemase can degrade almost all β-lactam antimicrobial drugs including the **carbapenems**

• The global prevalence of carbapenemases has been of great concern

• Based on their molecular structures, carbapenemases can be divided into three classes:

Different molecular classes
 of carbapenemases vary
 significantly in their
 susceptibilities toward
 different β-lactamase
 inhibitors (BLIs)

- Timely carbapenemase detection and classification are **still challenging** for microbiology laboratories
- Phenotypic assays require at least 18 to 24 h despite being inexpensive and easily established

- Relatively fast turnaround times (15 min to 2 h) is recorded for:
 - 1. Immunochromatographic lateral flow assays
 - 2. Molecular tests of carbapenemase genes

But there are some problems:

- 1. Costly
- 2. Generally available only for the most common carbapenemases

- The recently developed (2012) **Carba NP test** and variants are elegant solutions & take only **2 h**
- ➤ Low sensitivity for OXA-48-like carbapenemases
- Subjective **interpretation** in color changes are concerning

A recently developed fluorogenic assay:

- ✓ Synthesizing carbapenem-based fluorogenic probe
- ✓ Using the carbapenem moiety as a substrate for carbapenemases
- ✓ Allowing carbapenemases to be detected quantitatively and objectively in **90 min**

Disadvantages:

3. This fluorogenic platform has not been developed and tested for carbapenemase molecular class characterization

Emerg Infect Dis. 2020 Apr; 26(4): 793-795.

doi: 10.3201/eid2604.181655

PMCID: PMC7101118

PMID: <u>32186503</u>

Novel Rapid Test for Detecting Carbapenemase

Yanfang Feng,¹ Akilan Palanisami,¹ Jerrin Kuriakose, Michael Pigula, Shoaib Ashraf, and Tayyaba Hasan[™]

- ► Author information ► Copyright and License information <u>Disclaimer</u>
- Yanfang Feng et al. have developed a cephalosporin-based fluorescent probe (2020)
 - ✓ Known as β-LEAF (β-lactamase enzyme-activated fluorophore)
 - ✓ For the rapid fluorescence identification of β-lactamase activity (**FIBA**) in bacteria

FIBA: Fluorescence identification of β -lactamase activity

- Rapid carbapenemase detection assay
- **Imipenem** (IMP) was added to inhibit non carbapenemase β -lactamases

- A) The β-lactamase enzyme-activated fluorophore probe
 - This construct was designed to mimic the enzymatic degradation properties

B) Assay profile for carbapenemase-producing bacteria

C) Assay profile for non–carbapenemase-producing bacteria

Purpose

- Introducing the carbapenemase type-dependent **BLIs**
- Let's see the FIBA paradigm can be extended beyond simple detection to perform rapid carbapenemase typing with a single mixing step in 10 min?!

MATERIALS & METHODS

- The assay was conducted in a 96-well plate
- Each isolate was tested with a total of 8 wells containing:
 - \geq 50 µl of β -LEAF probe (20 µM)
 - > 10 μl of the cell membrane permeabilizer polymyxin B nonapeptide (PMBN, 1 mg/ml)

FIBA assay

Control

50 μl of β-LEAF 10 μl of PMBN

10 µl of PBS

50 μl of β-LEAF 10 μl of PMBN

10 μl IMP (200 μM) BLI

50 μl of β-LEAF 10 μl of PMBN

10 μl CA (500 μM) 50 μl of β-LEAF 10 μl of PMBN **10 μl EDTA**

(10 mM)

Were conducted in duplicate wells

FIBA assay

- FIBA with another permeabilizer, 0.1% CHAPS was performed for β -lactamase **negative**
- This was to rule out **false negatives** due to insufficient permeabilization due to bacterial **polymyxin resistance**
- Before each isolate test, the stored reagents were mixed and aliquoted in 8 wells of a 96-well plate on **ice in the dark**

FIBA assay

- A 30 μl amount of one of the aforementioned bacterial PBS suspensions was added
- Then placed in a fluorescence plate reader and mixed using the plate reader's shaking function
- The fluorescence increase was monitored by measuring the fluorescence
 - ➤ At 37°C
 - > At 10-s intervals
 - > Excitation/emission at 450/510 nm for 10 min

Automated data analysis

- FIBA recognizes carbapenemases and their molecular types by comparing the fluorescence increase rate (R) of β-LEAF
 - \triangleright IMP (non carbapenemase β -lactamase inhibitor)
 - > CA (class A carbapenemase inhibitor)
 - > EDTA (class **B** carbapenemase inhibitor)

a) The fluorescence emission behavior by the function of time when strains producing β -lactamase

b) carbapenemase and non carbapenemase β -lactamase

c) Different classes of carbapenemases are challenged by β -LEAF alone or β -LEAF together with one of the three inhibitors

- FIBA was tested on **141** human isolates
- The isolates chosen by the Centers for Disease Control (CDC) to challenge antibiotic resistance detection assays
- An additional 6 non-carbapenemase-producing isolates were acquired from the American Type Culture Collection (ATCC)
- This test panel covers 19 different bacterial species

- As a reference:
 - \triangleright Genetic test results for β -lactamases
 - > Supplemented with carbapenem susceptibilities
- Samples were physically tested in a blind and random fashion

Among these tested isolates:

- > 87 isolates are carbapenemase producing
- ➤ 60 isolates are non-carbapenemase producing

• The isolates without carbapenemases include:

- \triangleright 10 isolates with no β-lactamase
- \geq 22 with only extended-spectrum β -lactamase (ESBL)
- ➤ 2 isolates with both ESBL & porin modification
- \triangleright 18 isolates with only AmpC β-lactamase detected
- \triangleright 3 isolates with both ESBL and AmpC β -lactamase
- \triangleright 5 isolates with ESBL, porin modification, and AmpC β -lactamase

TABLE 1 Non-carbapenemase-producing isolates subjected to the FIBA test

$oldsymbol{eta}$ -Lactamase type	Species	No. of isolates tested	$MIC of^a$:	MIC of ^a :				
			IMP	MRP	ETP	DRP	β-LEAF	+IMP
None	E. faecium	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
	E. cloacae	1	≤0.5	≤0.12	0.5	0.5	_	_
	E. coli	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
	K. oxytoca	1	≤0.5	1	4	0.5	_	_
	K. pneumoniae ^c	1	2	2	>8	2	_	_
	P. mirabilis ^c	1	8	0.5	0.25	1	_	_
	S. Enteritidis	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
	S. marcescens ^c	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
	S. Oslo ^c	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
	S. Typhimurium	1	≤0.5	≤0.12	≤0.12	≤0.12	_	_
ESBL	C. koseri	1	≤0.5	≤0.12	≤0.12	≤0.12	+	_
	E. coli	15	≤0.5	≤0.12-0.25	≤0.12-1	≤0.12-0.25	+	_
	K. oxytoca	1	≤0.5	≤0.12	≤0.12	≤0.12	+	_
	K. pneumoniae ^{c,d}	6	≤0.5 - 8	≤0.12->8	≤0.12->8	≤0.12->8	+	_
	S. sonnei	1	≤0.5	≤0.12	≤0.12	≤0.12	+	_
AmpC	C. freundii	3	≤0.5-1	≤0.12	≤0.12	≤0.12	+	_
	E. cloacae ^d	4	≤0.5-4	≤0.12-8	0.25->8	≤0.12 - 4	+	_
	E. cloacae	1	≤0.5	≤0.12	≤0.12	≤0.12	+	_
	E. coli ^d	4	≤0.5-32	≤0.12->8	≤0.12->8	≤0.12 - 8	+	_
	K. aerogenes ^c	1	≤0.5	≤0.12	1	≤0.12	+	_
	P. aeruginosa	2	16-64	≥ 8	>8	>8	+	_
	S. aureus ^c	3	≤0.5	≤0.12	≤0.12	≤0.12	+	_
ESBL and AmpC	E. cloacae	1	≤0.5	≤0.12	1	≤0.12	+	_
	E. coli ^d	5	≤0.5-64	≤0.12->8	≤0.12->8	≤0.12->8	+	_
	K. pneumoniae ^d	2	4-16	1–8	>8	1–8	+	_

TABLE 2 Carbapenemase-producing isolates subjected to the FIBA test

Carbapenemase category			No. of isolates	MIC of ^a :				FIBA test result ^b			
Ambler class	Туре	Species	tested	IMP	MRP	ETP	DRP	β-LEAF	+IMP	+CA	+EDTA
Class A	KPC	E. cloacae ^c	4	2–8	2-8	≥8	2->8	+	+	_	+
		E. coli	4	2-8	0.5-8	1->8	0.5-8	+	+	_	+
		E. coli	1	16	8	>8	8	+	_	_	+
		K. ascorbata	1	4	8	8	4	+	+	_	+
		K. oxytoca	1	4	2	2	2	+	+	_	+
		K. pneumoniae ^{c,d}	33	8->64	>8	>8	4->8	+	+	_	+
		M. morganii ^c	1	8	4	8	4	+	+	_	+
		P. aeruginosa	1	>64	>8	>8	>8	+	+	_	+
		P. mirabilis ^c	1	16	2	3	4	+	+	_	+
		S. marcescens ^c	1	>64	>8	>8	>8	+	+	_	+
	SME	S. marcescens ^c	8	>32	>8	>8	>8	+	+	_	+
	NMC-A	E. cloacae	2	≥32	>8	>8	>8	+	+	_	+
Class B	NDM	E. cloacae	1	16	>8	>8	>8	+	+	+	_
		E. coli	3	16-64	>8	>8	>8	+	+	+	-
		P. mirabilis ^c	1	32	4	4	>8	+	+	+	-
	VIM	P. aeruginosa ^c	4	4->64	4->8	4->8	4->8	+	+	+	-
	IMP	P. aeruginosa	1	>64	>8	>8	>8	+	+	+	-
Class D	OXA	A. baumannii ^c	14	1->64	0.5->8	1->8	0.5->8	+	+	+	+
		C. freundii	1	4	4	8	2	+	+	+	+
		E. coli	1	>64	>8	>8	>8	+	+	+	+
		K. aerogenes	1	4	2	2	2	+	+	+	+
		K. pneumoniae ^c	1	8	>8	>8	>8	+	+	_	+
		K. pneumoniae ^c	1	16	>8	>8	8	+	+	+	+

• All but one (*E. coli* with KPC carbapenemase) of the carbapenemase-producing isolates were successfully distinguished

• Resulting in:

- > 99% sensitivity (95% confidence interval [CI], 94% to 100%)
- > 100% specificity (95% CI, 93% to 100%)

Typing of Carbapenemase

All of the carbapenemase positive isolates were classified successfully by FIBA

Except for one class D carbapenemase producer

- ✓ *K. pneumoniae* with OXA-48 carbapenemase
 - ✓ That was diagnosed as a class A producer

Carbapenemase Classification Sensitivity

This yields a carbapenemase classification:

Carbapenemase Classification Specificity

- One carbapenemase-positive isolate was miscategorized as noncarbapenemase producing by FIBA
 - ✓ Probably due to this isolate's remarkably low β-lactamase activity
 - ✓ Which did not allow an efficient hydrolysis of the noncarbapenemase inhibitor, **IMP**

- Inhibition of CA, the class A carbapenemase inhibitor in FIBA, was detected in one class D carbapenemase producer
 - ✓ This might be caused by the high concentration of CA in the FIBA assay
 - ✓ Which was applied to overcome the CA resistance in some class A carbapenemases

- As a variety of novel BLIs are becoming available
- Potential misclassification of class D carbapenemase would likely be prevented by introducing a specific class D β-lactamase inhibitor in FIBA

- Two strains (1 *P. mirabilis* & 1 *P. aeruginosa*) labeled as β-lactamase negative with the weak cell permeabilizer PMBN
- Were subsequently found positive with the stronger permeabilizer
 CHAPS
 - ✓ As this assay is examined in more-expansive future studies
 - ✓ It will become clearer whether or not the stronger permeabilizer can always be used alone

- The only required common laboratory equipment
 - ✓ The fluorescence plate reader, can easily be replaced by portable, low-cost fluorescence readers
- It is close in price (~\$1 per assay) to the typical phenotypic tests
 - ✓ But significantly **faster** & **less** labor intensive

- Compared to Carba NP, which is the most rapid test currently used in microbiology laboratories
 - ✓ FIBA is more than 10 times faster in carbapenemase identification and typing
 - ✓ While maintaining comparable sensitivity and specificity

- In terms of future directions, expanded testing of FIBA with more clinical isolates
- Particularly those that are not represented in the current test panel (e.g., IMI and GES)
- Those with lower carbapenem MICs and poorer hydrolytic profiles (e.g., OXA-48, VIM, and SME)

- Another essential work for the future is to expand the FIBA paradigm to recognize
 - ✓ The coexistence of carbapenemases from multiple Ambler classes
 - ✓ Since isolates carrying **more than** one molecular class of carbapenemases are emerging

Conclusion

• Finally, as the enhanced detection capabilities of FIBA may open the doors

- ✓ For simple assays of direct
- ✓ Uncultured human specimens
- ✓ Testing on direct specimens is currently in progress

Thank You!!!